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Abstract
It has been pointed out that a chaos control technique wherein a weak
excitation is added to the system could be useful for the control of friction at
the nanoscale. We examine the claim that this technique can achieve chaos
control even though the added excitation is weak. We show that this claim is
only valid for the particular case of systems with very shallow potential
wells. However, the applicability of the technique is more general provided
that the added periodic force is not restricted to being weak.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Efforts to create nano-devices and new ultra-small technology
capable of improving the performance of robots, computers,
communications and other electro/optical/mechanical devices
must account for the role of friction. For this reason control
of friction, and in particular control of chaos associated with
its presence, is considered to be an important research area
within the broad framework of manipulation of properties at
nanoscale [1]. In this context, for the control procedure to be
useful, it is important that the external perturbations be weak.
According to [1, p 17], one of the techniques applicable for
chaos control is the addition to the system of ‘tiny external
perturbations’, as proposed in [2].

The technique proposed in [2] and results obtained therein
are also mentioned in [3, p 605] and [4]. The latter notes that
‘there is not sufficient rigorous theory to support this approach’.
In this paper we show that it is nevertheless possible to assess
the applicability, and point out a significant limitation of this
technique.

2. Discussion

The system used in [2] to demonstrate the proposed control
technique is a Josephson junction and therefore belongs to the
class of planar multistable systems that possess a Melnikov
function. The necessary condition for the occurrence of

chaos in a dissipative planar multistable system with forcing
A cos(ωt) + a cos(βωt + φ) is that its Melnikov function M(t)

have simple zeros [5, 6] and [7, (section 2.5.3)], where, for
each potential well,

M(t) = −k + Aα(ω) cos[ωt + ϑ(ω)] + aα(βω)

× cos[ωt + ϑ(βω) + ϕ], (1)

the constant k depends on the dissipation term in the system’s
equation of motion and (via the associated homoclinic or
heteroclinic orbit) on the shape of the well, and α(ω), ϑ(ω),
termed the Melnikov scale factor and the Melnikov phase
angle, respectively, depend on the shape of the well. Strictly
speaking, the Melnikov necessary condition for chaos is valid
if the dissipation and excitation terms in the equation of
motion of the system are asymptotically small, but it has
been amply demonstrated in the literature that it also holds
for sufficiently small perturbations of interest in practical
applications. Associated with the Melnikov function is the
functional known as the phase space flux factor � [6, 7], a
measure of the degree to which the system is chaotic. If the
Melnikov function has no simple zeros the factor � is zero.
If the Melnikov function has simple zeros, � increases as a

increases; for fixed a, � increases as the frequency excitation
βω is closer to the frequency for which the Melnikov scale
factor is largest [7–10]. As � increases the system becomes
more chaotic. The effect of the added excitation is therefore
to intensify, rather than tame, the chaos. This is the case for

0957-4484/02/020153+04$30.00 © 2002 IOP Publishing Ltd Printed in the UK 153

http://stacks.iop.org/na/13/153


Z Abbadi and E Simiu

0 5 10 15 20 25 30
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
ot

en
tia

l

Angle

Figure 1. System potential.
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Figure 2. (a) Chaotic motion (a = 0, A = 1.75, G = 0.7, I = 0). (b) Chaotic motion (a = 0.0125, β = 0.4, A = 1.75, G = 0.7, I = 0).
(c) Periodic rotational motion (a = 1.0, β = 0.4, A = 1.75, G = 0.7, I = 0).

� > 0 and a < a1(A, ω, β), where a1(A, ω, β) is a threshold
above which Melnikov theory breaks down. (For details on
dependence on A, ω and β, see, e.g., [8].)

For a larger than a threshold a2(A, ω, β) that can be de-
termined experimentally or numerically, a transition occurs
from chaotic motion to periodic (or, if ω and βω are incom-
mensurate, quasiperiodic) rotational motion. For the interval
a1(A, ω, β) < a < a2(A, ω, β), depending upon the struc-
ture of the system’s bifurcations, it may be expected that as a

increases, the motion becomes less chaotic; if windows of pe-
riodicity exist, the motion may become periodic or quasiperi-
odic. However, the absence of a theory, noted in [3], means
that no dependable guidance is available for practical appli-
cations such as, for example, the control of chaos associated
with friction at the nanoscale. However, transition from chaos
to rotation definitely occurs for a > a2(A, ω, β), and this fact
can be used in practice for the purpose of chaos suppression.

The objective of this paper is to show that, in general,
the value of a required to achieve chaos suppression is not
small in relation to A, as is stated in [1] and [2]. The role
of the added excitation is to supply the complementary energy
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needed to bring about the transition from chaos to rotation. For
the case of multistable systems—the case discussed in [2]—
the added forcing needed to cause the transition is weak only if
the system’s potential wells are shallow. If this is not the case,
the added periodic perturbation cannot be weak, as would be
required, according to [1], for the control of chaos associated
with friction at the nanoscale.

To explain the statements of the preceding paragraph we
consider the system known as the Josephson junction used
in [2] to demonstrate the technique proposed therein:

θ̈ + Gθ̇ + sin θ = I + A sin(ωt) + a sin(βωt). (2)

We assume, as in [2], G = 0.7, ω = 2π/25.12. Let us
first consider the case I = 0. The system potential for this
case is shown in figure 1.

For a = 0 and A = 1.75, it can be verified that the
behaviour of the system is chaotic (figure 2(a)). We now
consider, as in [2], the case a = 0.0125 � A, β = 0.4. The
system can again be verified to be chaotic (figure 2(b)). This
is so because the potential energy associated with the height of
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Figure 4. (a) Periodic librational motion (a = 0, β = 0.4, A = 0.1, G = 0.7, I = 0.905). (b) Chaotic motion (a = 0, β = 0.4, A = 0.4,
G = 0.7, I = 0.905). (c) Periodic rotational motion (a = 0.0125, β = 0.4, A = 0.4, G = 0.7, I = 0.905).
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Figure 3. System potential, I = 0.905.

the potential barrier is relatively large in relation to the energy
associated with the total forcing, that is, that energy is not
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sufficient to cause a transition from chaotic motion to rotational
motion. However, for the larger added forcing a = 1, the
system is no longer chaotic. Rather, its motions consist of
periodic rotations—see figure 2(c).

We now consider, as in [2], the case I = 0.905. The
potential, rather than having the expression U(θ) = − cos(θ),
as was the case for I = 0, has the expression U(θ) =
− cos(θ) − Iθ (figure 3). Figure 3 shows that the height of
the potential barrier with respect to the bottom of the well
located at its left is considerably less than was the case for
I = 0. For A = 0.1 and a = 0, the steady state motion
starting with zero initial velocity at the bottom of a well (i.e.
at the point where the tangent to the potential curve vanishes)
is periodic and librational (figure 4(a)). For A = 0.4, a = 0
the motion is chaotic (figure 4(b)). If we add harmonic forcing
with a = 0.0125, the motion becomes periodic and rotational,
that is, a transition from chaos to rotational motion will have
occurred (figure 4(c)). That the amplitude a needed for the
transition to occur is small is due to the fact that the potential
barrier to be overcome is low; however, the mechanism is
exactly the same in this case as in the case of figure 2(c).

3. Conclusion

We conclude that, for multistable planar systems, the statement
in [1] and [2] that weak added periodic excitation may be used
to tame chaotic behaviour is appropriate only for the particular
case in which the height of the system’s potential wells is
low. Otherwise, the method proposed in [2] remains applicable
provided, however, that the requisite added excitation, rather
than being ‘tiny’, is relatively strong.
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